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Motivation

Classical Scheduling: 

Set of jobs to be scheduled on one (several) machine(s)

Each job has a set of characteristics

One objective function to be optimized

Several models and 

efficient methods

One Objective function:

Minimize:

Makespan (Cmax ) 

Or Tardy job (∑Uj)

Motivation Definition Resolution approaches Computational results Conclusion
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Motivation

Multicriteria scheduling problems (T’kindt & Billaut 2005)

Only one objective function is not always sufficient

Good solutions with respect to one objective may be bad with

respect to other objectives

Finding solutions of good compromise

Several objective functions:

Makespan (Cmax )

And Tardy job (∑Uj ) and …

Motivation Definition Resolution approaches Computational results Conclusion
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Motivation

Sometimes… Multi-agent Scheduling

 Jobs are not equivalent and applying the same measure to all
jobs is not useful.

 Each subset of jobs is assessed according to objective function,
where jobs are in competition for the use of the machines.

 This is a multi-criteria, multi-agent scheduling problem, where
a new type of compromise has to be obtained.

Problems noted “multi-agent scheduling problems " (Agnetis
et al. 2014).

Motivation Definition Resolution approaches Computational results Conclusion
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Multi-agent scheduling

Jobs

Jobs

Jobs

Objective: schedule jobs on 

machines to 

Min(f1, f2)

Motivation Definition Resolution approaches Computational results Conclusion

Agent A wants minimize completion time Agent B don't want to have the late
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(Agnetis et al. 2014)
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Motivation Definition Resolution approaches Computational results Conclusion
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Multiagent: definition and notations
The book “multi-agent scheduling problems " (Agnetis et al. 2014)

 Groups of jobs are identified by their owned ‘agents’ k, ∀𝑘 ∈ 1,2, …𝐾

 Agent k have the jobs 𝐽1
𝑘 , … , 𝐽𝑛𝑘

𝑘 ∈ 𝐽 𝑘, objective function 𝑓𝑘, ∀𝑘 ∈ 1,2, …𝐾 , 

 𝐽𝑗
𝑘 : the job number j of agent k

 𝑝𝑗
𝑘 : processing time of job number j of agent k

 𝑑𝑗
𝑘 : due date of job number j of agent k

 𝐶𝑗
𝑘 : completion time of job number j of agent k

 𝐶𝑚𝑎𝑥
𝑘 : makespan of agent k

 𝑈𝑗
𝑘 : number of tardy jobs in position job j of agent k.

 The tardiness penalty 𝑈𝑗
𝑘 = 0 𝑖𝑓 𝐶𝑗

𝑘 < 𝑑𝑗
𝑘 𝑒𝑎𝑟𝑙𝑦 , 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (tardy)

Motivation Definition Resolution approaches Computational results Conclusion
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Problem definition and notations

Motivation Definition Resolution approaches Computational results Conclusion

In case two agents: A and B

The studied problem is denoted by 𝑃𝑚|𝑁𝐷, 𝑑
𝐵, σ𝑈𝑗

𝐵 ≤ 𝑄𝐵| 𝐶𝑚𝑎𝑥
𝐴 .

This problem is NP-hard (Sadi et al. 2014)

𝑨𝒈𝒆𝒏𝒕𝑩𝑨𝒈𝒆𝒏𝒕𝑨

duedate 𝑑𝐵
Solution

1 2

3
4

5

6

Early jobs
σ𝑈𝑗

𝐵 = 𝑄𝐵
Total number of tardy jobs of agent B

𝑀1

:

𝐶𝑚𝑎𝑥
𝐴 : makespan of agent A

1 2 345 6

𝑀𝑚

𝐽 𝐴 = 𝐽1
𝐴, 𝐽2

𝐴, … , 𝐽𝑛𝐴
𝐴

𝑱 𝑩 = 𝐽1
𝐵 , 𝐽2

𝐵 , … , 𝐽𝑛𝐵
𝐵

𝐼𝑛 𝑐𝑎𝑠𝑒 𝑁𝑜𝑛 − 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡:
𝐽 𝐴 ∪ 𝐽 𝐵 ≠ ∅

1(𝑃𝑚)|𝑁𝐷, 𝑑
𝐵, σ𝑈𝑗

𝐵 ≤ 1| 𝐶𝑚𝑎𝑥
𝐴
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Structure of non-dominated solution

Proposition:

If problem 𝑃𝑚|𝑁𝐷, 𝑑
𝐵, σ𝑈𝑗

𝐵 ≤ 𝑄𝐵 | 𝐶𝑚𝑎𝑥
𝐴 admits a feasible 

solution, then it is possible to build an optimal solution such that on 

each machine we have:

1. Jobs of agent B appear in SPT order. 

2. Tardy job 𝐽𝑗 within 𝐽 𝐵\{𝐽 𝐴 ∩ 𝐽 𝐵} is scheduled after the jobs of 

agent A.

𝐽 𝐵\{𝐽 𝐴 ∩ 𝐽 𝐵} 

𝐽 𝐴\{𝐽 𝐴 ∩ 𝐽 𝐵} 

𝐽 𝐴 ∩ 𝐽 𝐵

𝑑𝐵 𝐶𝑚𝑎𝑥
𝐴 𝐶𝑚𝑎𝑥

𝐵

𝑒𝑎𝑟𝑙𝑦 𝑗𝑜𝑏𝑠 𝑡𝑎𝑟𝑑𝑦 𝑗𝑜𝑏𝑠

Motivation Definition Resolution approaches Computational results Conclusion
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Integer programming formulation 1

 𝑥𝑖,𝑗= 1 if job 𝐽𝑗 is 

scheduled on machine 𝑀𝑖; 0 

otherwise.

 𝑦𝑗,𝑘 = 1 if job 𝐽𝑗 is 

executed before job 𝐽𝑘 on the 

same machine; 0 otherwise. 

 𝑧𝑗 = 1 if job 𝐽𝑗 is 

scheduled after its due date 

𝑑𝐵; 0 otherwise. 

Motivation Definition Resolution approaches Computational results Conclusion

The first one, is based on 

precedence decision variables
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Integer programming formulation 2

 𝑠𝑗,𝑡 takes as new 

binary variables that 

are time indexed. 𝑠𝑗,𝑡
takes as a value 1 if 

job 𝐽𝑗 starts its 

processing at time t; 0 

otherwise.

Thereby, we have

n × (T + 1) binary 

variables, which is 

pseudo polynomial.

The second, is based on time 

indexing decision variables

Motivation Definition Resolution approaches Computational results Conclusion
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Polynomial heuristic H1

Problem 𝑃𝑚|𝑁𝐷, 𝑑
𝐵, σ𝑈𝑗

𝐵 ≤ 𝑄𝐵 | 𝐶𝑚𝑎𝑥
𝐴 is NP-hard (Sadi et al. 2014)

SPT: The Shortest Processing Time first 

LPT: The Longest Processing Time first 

FAM: Assign job to the First Available Machine.

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦: 𝑂(𝑛𝐴 log 𝑛𝐴 + (𝑛𝐵 log 𝑛𝐵 )

Motivation Definition Resolution approaches Computational results Conclusion
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Polynomial heuristic H1

𝑃𝑚|𝑁𝐷, 𝑑
𝐵, σ𝑈𝑗

𝐵 ≤ 𝑄𝐵| 𝐶𝑚𝑎𝑥
𝐴

Use LPT-FAM

𝑆𝑒𝑡 𝐸(𝑒𝑎𝑟𝑙𝑦 𝑗𝑜𝑏𝑠) = 𝐽1
𝐵 , … , 𝐽𝑛𝐵−𝑄𝐵

𝐵 ⟺σ𝑈𝑗
𝐵 ≤ 𝑄𝐵

𝑑𝐵

Motivation Definition Resolution approaches Computational results Conclusion



15/28ROADEF 2017, 22-24/02/2017, Metz, France

Polynomial heuristic H1

To improve this heuristic with the main idea: 

“we try to swap the jobs if possible”

jobs X

𝐶𝑚𝑎𝑥
𝐴

𝑑𝐵 𝑑𝐵

space Y

𝑆𝑒𝑡 𝐸(𝑒𝑎𝑟𝑙𝑦 𝑗𝑜𝑏𝑠) = 𝐽1
𝐵 , … , 𝐽𝑛𝐵−𝑄𝐵

𝐵 ⟺σ𝑈𝑗
𝐵 ≤ 𝑄𝐵

Motivation Definition Resolution approaches Computational results Conclusion



16/28ROADEF 2017, 22-24/02/2017, Metz, France

Polynomial heuristic H2 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦: 𝑂(𝑛𝐴 log 𝑛𝐴 + (𝑛𝐵 log 𝑛𝐵

improve

Motivation Definition Resolution approaches Computational results Conclusion
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Polynomial heuristic H2

𝑃𝑚|𝑁𝐷, 𝑑
𝐵, σ𝑈𝑗

𝐵 ≤ 𝑄𝐵| 𝐶𝑚𝑎𝑥
𝐴

Use LPT-FAM improve

𝑆𝑒𝑡 𝑆 = 𝐽1
𝐵 , … , 𝐽𝑛𝐵−𝑄𝐵

𝐵 ∪ 𝐽𝐴

𝑑𝐵

+

Use LPT-FAM

Motivation Definition Resolution approaches Computational results Conclusion
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Pseudo-polynomial heuristic

These heurictis base on Dynamic Programming algorithm (DP) proposed to slove

optimally classical scheduling problem 𝑃𝑚||𝐶𝑚𝑎𝑥 (Blaziwicz et al. 2007)

A solution is given in 𝑂(𝑛2 + 𝑛(𝑈𝐵)2, where UB is the upper bound of the makespan

of agent A.

Motivation Definition Resolution approaches Computational results Conclusion



19/28ROADEF 2017, 22-24/02/2017, Metz, France

Use Dynamic programming

Pseudo-polynomial heuristic H3

𝑃𝑚|𝑁𝐷, 𝑑
𝐵, σ𝑈𝑗

𝐵 ≤ 𝑄𝐵| 𝐶𝑚𝑎𝑥
𝐴

𝑆𝑒𝑡 𝐸(𝑒𝑎𝑟𝑙𝑦 𝑗𝑜𝑏𝑠) = 𝐽1
𝐵 , … , 𝐽𝑛𝐵−𝑄𝐵

𝐵 ⟺σ𝑈𝑗
𝐵 ≤ 𝑄𝐵

𝑑𝐵

Motivation Definition Resolution approaches Computational results Conclusion
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Pseudo-polynomial heuristic H4
𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦: 𝑂(𝑛𝑙𝑜𝑔(𝑛) + 𝑛 𝑈𝐵 2

Motivation Definition Resolution approaches Computational results Conclusion
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Polynomial heuristic H4

𝑃𝑚|𝑁𝐷, 𝑑
𝐵, σ𝑈𝑗

𝐵 ≤ 𝑄𝐵| 𝐶𝑚𝑎𝑥
𝐴

Use LPT-FAM improve

𝑆𝑒𝑡 𝑆 = 𝐽1
𝐵 , … , 𝐽𝑛𝐵−𝑄𝐵

𝐵 ∪ 𝐽𝐴

𝑑𝐵

+

Use Dynamic programming

Motivation Definition Resolution approaches Computational results Conclusion
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Computational results

Coded with C, Cplex 12.6.2, run in CPU Intel Core i5 2.4Ghz 8GB RAM

The time indexed formulation is better than the assigned formulation, since its solves 

instances with 70 jobs in 1 hour and 18 minutes on average

|S*|: the cardinality of the exact Pareto front 

 𝑛 ∈ 10,20,30,40,50,60,70
 Fixe time limit is 1h for each value Q

 M = 2 identical machines 

 30 instances are generated for each n

 For each instance, the jobs are 

assigned randomly to the agents 

 𝑎𝑗 = 1 𝑖𝑓𝐽𝑗 ∈ 𝐽 𝐵\ 𝐽 𝐴 ∪ 𝐽 𝐵

 𝑎𝑗 = 2 𝑖𝑓𝐽𝑗 ∈ 𝐽 𝐴 ∪ 𝐽 𝐵

 𝑎𝑗 = 3 𝑖𝑓𝐽𝑗 ∈ 𝐽 𝐴\ 𝐽 𝐴 ∪ 𝐽 𝐵

 Processing time 𝑝𝑗
𝑘= 1; 10

Motivation Definition Resolution approaches Computational results Conclusion
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Computational results

Motivation Definition Resolution approaches Computational results Conclusion

Example of the obtained Pareto fronts with instances with 20, 30 jobs.



24/28ROADEF 2017, 22-24/02/2017, Metz, France

Computational results

Motivation Definition Resolution Approaches Computational results Conclusion

Example of the obtained Pareto fronts with instances with 40, 50
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Computational results

Coded with Python 3.5, Cplex 12.6.3 and run in CPU Intel Core i5 2.4Ghz 8GB RAM

CPU’time of H1 and H2 always nearly zero. 

CPU’time of H4 < H3, because UB(upper bound) of H4 < H3 (LPT-FAM improve).

Value |S| : H1 > H3 > H2 > H4 (H4 use exact method) 

|S|: (the cardinality of the near Pareto front)

Motivation Definition Resolution approaches Computational results Conclusion
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Computational results

 %S: this metric calculates the number of exact solutions generated 

given by |S∩S∗|/|S|. 

 GD: generational distance.

 H: Hypervolume calculates the area dominated by some front. 

Motivation Definition Resolution approaches Computational results Conclusion
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 Multi-agent scheduling problems with common due date to minimize both

tardy jobs and makespan: 𝑃𝑚|𝑁𝐷, 𝑑
𝐵 , σ𝑈𝑗

𝐵 ≤ 𝑄𝐵| 𝐶𝑚𝑎𝑥
𝐴

 Two types of mathematical programming formulation based on :

precedence and time indexing decision variables.

 Proposed four heuristics for this NP-hard problem:

 Polynomial heuristics: Algorithm H1, H2

 Pseudo-polynomial heuristics: Algorithm H3, H4 base on dymamic

programming

 Perspectives :

For further research, we will propose a genetic algorithm starting from the

solutions obtained by the heuristics. It would be also interesting to seek for

a pseudo-polynomial time algorithm.

Motivation Definition Resolution approaches Computational results Conclusion
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